Funktionsweise des Werkzeugs "Trend"

Das Werkzeug Trend verwendet eine globale polynomische Interpolation, die eine glatte, von einer mathematischen (polynomischen) Funktion definierte Oberfläche an die Eingabereferenzpunkte anpasst. Die Trend-Oberfläche ändert sich schrittweise und erfasst Muster mit gröberem Maßstab in den Daten.

Konzeptioneller Hintergrund

Vom Konzept her entspricht die Interpolation mit "Trend" dem Einführen eines Blatt Papiers zwischen die (bis zur Höhe des Wertes) erhöhten Punkte. Dies wird nachstehend für einen Satz von Referenzhöhenpunkten veranschaulicht, die auf einem Hügel mit sanftem Anstieg genommen wurden. Das Stück Papier ist magentarot.

Flache Trend-Oberfläche
Abbildung einer flachen Trend-Oberfläche

Mit einem flachen Blatt Papier wird eine Landschaft mit einem Tal nicht präzise erfasst. Wenn Sie jedoch das Blatt einmal biegen, erhalten Sie eine wesentlich bessere Anpassung. Das Hinzufügen eines Terms zur mathematischen Formel liefert ein ähnliches Ergebnis: eine Biegung in der Ebene. Eine flache Ebene (keine Biegung im Blatt Papier) ist ein Polynom erster Ordnung (linear). Das Zulassen von einer Biegung ist ein Polynom zweiter Ordnung (quadratisch), von zwei Biegungen ein Polynom dritter Ordnung (kubisch) usw. Dieses Werkzeug lässt maximal 12 Biegungen (12. Ordnung) zu. Die folgende Abbildung zeigt ein Polynom zweiter Ordnung, das an ein Tal angepasst wurde.

Geschwungene Trend-Oberfläche
Abbildung einer geschwungenen Trend-Oberfläche

Nur selten verläuft das Blatt Papier durch die tatsächlich gemessenen Punkte, weshalb "Trend" ein ungenauer Interpolator ist. Einige Punkte befinden sich über dem Blatt, andere darunter. Wenn Sie jedoch die Beträge addieren, um die sich jeder Punkt höher über dem Blatt bzw. tiefer unter dem Blatt befindet, sollten die beiden Summen ähnlich sein. Die magentafarben gezeigte Oberfläche wird mithilfe einer Anpassung per Kleinste-Quadrate-Regressionsanalyse erzielt. Die resultierende Oberfläche minimiert die quadrierten Differenzen zwischen den erhöhten Werten und dem Blatt Papier.

Je geringer der RMS-Fehler ist, desto präziser repräsentiert die interpolierte Oberfläche die Eingabepunkte. Die häufigsten Polynomordnungen sind eins bis drei. Oberflächeninterpolationen mit der Funktion "Trend" erstellen glatte Oberflächen.

Verwendung der Trend-Interpolation

Die Interpolation mit "Trend" führt zu einer glatten Oberfläche, die abgestufte Trends auf der Oberfläche im Untersuchungsbereich abbildet. Dieser Interpolationstyp kann für die folgenden Fälle eingesetzt werden:

Bei der Interpolation mit "Trend" wird eine sich langsam verändernde Oberfläche mithilfe von Polynomen niedriger Ordnung erstellt, die möglicherweise einen physikalischen Prozess beschreiben (z. B. Verschmutzung und Windrichtung). Je komplexer das Polynom ist, desto schwieriger wird es jedoch, ihm eine physikalische Bedeutung zuzuschreiben. Darüber hinaus sind die berechneten Oberflächen sehr anfällig für Ausreißer (extrem hohe und niedrige Werte), insbesondere in den Randbereichen.

Trend-Interpolationstypen

Es gibt zwei grundlegende Trend-Interpolationstypen: LINEAR und LOGISTIC

LINEAR

Der zur Option LINEAR der Funktion "Trend" gehörende Oberflächeninterpolator erstellt ein Gleitkomma-Raster. Er verwendet eine polynomische Regression, um eine aus kleinsten Quadraten bestehende Oberfläche an die Eingabepunkte anzupassen. Die Option LINEAR ermöglicht Ihnen die Steuerung der Ordnung des Polynoms, das zum Anpassen der Oberfläche verwendet wird. Um die Option LINEAR von "Trend" besser zu verstehen, betrachten Sie ein Polynom der ersten Ordnung. Eine Oberflächeninterpolation der 1. Ordnung mit der Option LINEAR der Funktion "Trend" führt eine "Least Squares"-Anpassung einer Ebene an die Menge der Eingabepunkte durch.

Oberflächeninterpolationen mit der Funktion "Trend" erstellen glatte Oberflächen. Die erstellte Oberfläche durchläuft nur selten die ursprünglichen Datenpunkte, da eine optimale Anpassung für die gesamte Oberfläche durchgeführt wird. Wenn Sie eine Polynomordnung (Parameter {order}) größer 1 verwenden, erstellt der Interpolator unter Umständen ein Raster, dessen Minimum und Maximum über das in der Eingabedatei der Eingabe-Feature-Daten angegebene Minimum und Maximum hinausgehen.

LOGISTIC

Die Option LOGISTIC der Funktion "Trend" zum Erstellen einer Oberfläche eignet sich für die Vorhersage des Vorhandenseins bzw. Fehlens bestimmter Phänomene (in Form einer Wahrscheinlichkeit) für eine bestimmte Menge an Positionen (X,Y) im Raum. Der Z-Wert ist eine kategorisierte Zufallsvariable mit nur zwei möglichen Ergebnissen, z. B. die Existenz einer bedrohten Art oder die Nichtexistenz dieser Art. Die beiden Z-Werte können als 1 und 0 kodiert werden. Die Option LOGISTIC erstellt ein kontinuierliches Wahrscheinlichkeits-Raster mit Zellenwerten zwischen 1 und 0.

Eine Schätzung der maximalen Wahrscheinlichkeit dient der Berechnung des nicht linearen Wahrscheinlichkeitsoberflächenmodells, ohne das Modell zuerst in ein lineares Format zu konvertieren.

Ausgabe-RMS-Datei

Die Ausgabe-RMS-Datei enthält Informationen zum RMS-Fehler der Interpolation. Hierfür werden die Positionswerte im Eingabe-Dataset mit den entsprechenden Werten in der interpolierten Raster-Oberfläche verglichen.

Mit dem RMS-Fehlerwert können Sie den optimalen Wert für den Parameter {order} der Interpolation ermitteln, indem Sie den Ordnungswert so lange ändern, bis Sie den niedrigsten RMS-Fehler erhalten. Der Chi-Quadrat-Wert wird auch ausgegeben.

Beispiel

Ein Beispiel für die Ausgabe-RMS-Datei bei der Ausführung des Werkzeugs "Trend", wobei Ordnung auf 3 eingestellt ist:

coef #          coef
------ ----------------
     0 -1192066.7888371
     1 -1.78479492586755
     2 -0.195982103615487
     3 -8.87072249743903e-1
     4 -2.0538267625596e-1
     5 -3.85610088343239e-1
     6 -1.46420255709888e-2
     7 -5.31539027745154e-2
     8 -2.59261094879031e-3
     9 9.71651459136166e-4
------ ----------------
RMS Error  = 296.957857221845
Chi-Square  = 17019506.0103975

Der vorhergesagte Wert an einer beliebigen Position im Ausgabe-Raster für diesen Trend dritter Ordnung kann ermittelt werden, indem die aus einer Reihe von Gleichungen resultierenden Werte addiert werden. Bei diesen Gleichungen ist x = der Längengrad der Position, y = der Breitengrad und der cn-Term der Koeffizientenwert aus der vorhergehenden Tabelle. Die Gleichungen für diese Interpolation der dritten Ordnung lauten wie folgt:

Prediction(x,y) = c0 + 

                  x·c1 + y·c2 + 

                  x2·c3 + x·y·c4 + y2·c5 +

                  x3·c6 + x2·y·c7 + x·y2·c8 + y3·c9

Im Prinzip ist der Koeffizient 0 immer der Schnittpunkt. Ab diesem Punkt werden die Terme der ersten Ordnung mit dem höchsten x beginnend und ohne x endend durchlaufen. Danach werden die Terme der zweiten Ordnung verschoben und durchlaufen die x erneut nach unten, und dieser Vorgang wird entsprechend für die Terme der dritten Ordnung ausgeführt.

HinweisHinweis:

Diese Gleichungen folgen einem ähnlichen Muster, da die Ordnung zunimmt. Beispielsweise werden bei Angabe der vierten Ordnung fünf weitere Werte in der RMS-Tabelle (die Koeffizienten 10, 11, 12 und 13) und entsprechend mehr Gleichungen angegeben, die sie nutzen.

Verwandte Themen

9/12/2013