An overview of the Interpolation toolset
Tools to predict values at unmeasured locations.
Tool 
Description 

Uses the measured values surrounding the prediction location to predict a value for any unsampled location, based on the assumption that things that are close to one another are more alike than those that are farther apart. 

Interpolates a surface using a kernel that is based upon the heat equation and allows one to use raster and feature barriers to redefine distances between input points. 

Empirical Bayesian Kriging is an interpolation method that accounts for the error in estimating the underlying semivariogram through repeated simulations. 

Fits a smooth surface that is defined by a mathematical function (a polynomial) to the input sample points. 

A moving window predictor that uses the shortest distance between points so that points on either side of the line barriers are connected. 

Fits the specified order (zero, first, second, third, and so on) polynomial, each within specified overlapping neighborhoods, to produce an output surface. 

Recalculates the Range, Nugget, and Partial Sill semivariogram parameters based on a smaller neighborhood, moving through all location points. 

Uses one of five basis functions to process each measured sample value, thus creating an exact interpolation surface. 