Análisis de cluster y de valor atípico (I Anselin local de Moran) (Estadística espacial)
Resumen
Dado un conjunto de entidades ponderadas, identifica puntos calientes, puntos fríos y valores atípicos espaciales estadísticamente significativos mediante la estadística de I Anselin local de Moran.
Ilustración
Uso
-
Esta herramienta crea una nueva Clase de entidad de salida con los siguientes atributos para cada entidad en la Clase de entidad de entrada: índice I de Moran local, puntuación z, valor P y tipo de cluster/valor atípico (COType). Los nombres de los campos de estos atributos también son valores de salida de herramienta derivados para uso potencial en modelos y secuencias de comandos personalizados.
-
Las puntuaciones z y los valores p son medidas de significancia estadística que indican si se rechazará la hipótesis nula, entidad por entidad. En efecto, indican si la aparente similitud (un clustering espacial de valores altos o bajos) o la falta de similitud (un valor atípico espacial) es más marcada de lo que se espera en una distribución aleatoria.
-
Una puntuación z positiva alta para una entidad indica que las entidades circundantes tienen valores similares (ya sea valores altos o bajos). El campo COType en la Clase de entidad de salida será Alto para un cluster de valores altos estadísticamente significativo (nivel 0,05) y Bajo para un cluster de valores bajos estadísticamente significativo (nivel 0,05).
-
Una puntuación z negativa baja (por ejemplo, < -1,96) para una entidad indica una valor atípico espacial estadísticamente significativo (nivel 0,05). El campo COType en la Clase de entidad de salida indicará si la entidad tiene un valor alto y está rodeada por entidades con valores bajos (Alto/bajo) o si la entidad tiene un valor bajo y está rodeada por entidades con valores altos (Bajo/alto).
-
La puntuación z está basada en el cálculo de la hipótesis nula de aleatorización. Para obtener más información sobre las puntuaciones z, consulte ¿Qué es una puntuación z? ¿Qué es un valor P?
-
Los cálculos basados en la distancia euclidiana o de Manhattan requieren datos proyectados para medir distancias correctamente.
-
Los centroides de entidad se utilizan en los cálculos de distancia para las entidades de línea y polígono. Para multipuntos, polilíneas o polígonos con varias partes, el centroide se calcula utilizando el centro medio ponderado de todas las partes de entidad. La ponderación para las entidades de punto es 1, para las entidades de línea es longitud y para las entidades de polígono es área.
-
El Campo de entrada debe contener una variedad de valores. La operación matemática para esta estadística requiere cierta variación en la variable analizada; no puede resolver si todos los valores de entrada son 1, por ejemplo. Si desea utilizar esta herramienta para analizar el patrón espacial de los datos de incidentes, considere agregar los datos de incidentes.
-
Su elección del parámetro Conceptualización de relaciones espaciales deberá reflejar relaciones inherentes entre las entidades que analiza. Cuanto más pueda modelar de manera realista cómo interactúan mutuamente las entidades en el espacio, más precisos serán sus resultados. Las recomendaciones se describen en Seleccionar una conceptualización de relaciones espaciales. Aquí le presentamos algunas sugerencias adicionales:
- FIXED_DISTANCE_BAND
La Banda de distancia o distancia de umbral predeterminada garantizará que cada entidad tenga un vecino como mínimo, lo cual es importante. Sin embargo, generalmente, este valor predeterminado no es la distancia más apropiada que se debe utilizar para el análisis. En Seleccionar un valor de banda de distancia fija se describen estrategias adicionales para seleccionar una escala apropiada (banda de distancia) para su análisis.
- INVERSE_DISTANCE o INVERSE_DISTANCE_SQUARED
Cuando se introduce cero para el parámetro Banda de distancia o distancia de umbral, se considera que todas las entidades son vecinas de las demás entidades; cuando este parámetro se deja en blanco, se aplica la distancia predeterminada.
Los pesos de las distancias menores que 1 se vuelven inestables cuando se invierten. Por consiguiente, a los pesos de entidades separadas por menos de 1 unidad de distancia (comunes en las proyecciones del Sistema de coordenadas geográficas), se les da un peso de 1.
Precaución:No se recomienda el análisis de entidades con una proyección del Sistema de coordenadas geográficas cuando se selecciona un método de conceptualización espacial basado en la distancia inversa (INVERSE_DISTANCE, INVERSE_DISTANCE_SQUARED o ZONE_OF_INDIFFERENCE).
Para las opciones de distancia inversa (INVERSE_DISTANCE, INVERSE_DISTANCE_SQUARED o ZONE_OF_INDIFFERENCE), dos puntos que son coincidentes recibirán un peso de uno para evitar la división por cero. Esto garantiza que las entidades no sean excluidas del análisis.
- FIXED_DISTANCE_BAND
-
Las opciones adicionales para el parámetro Conceptualización de relaciones espaciales, incluyendo las relaciones espacio-tiempo, están disponibles mediante las herramientas Generar matriz de ponderaciones espaciales o Generar pesos espaciales de red. Para aprovechar estas opciones adicionales, utilice una de estas herramientas para crear el archivo de matriz de ponderaciones espaciales antes del análisis; seleccione GET_SPATIAL_WEIGHTS_FROM_FILE para el parámetro Conceptualización de relaciones espaciales; y, para el parámetro Archivo de matriz de ponderaciones, especifique la ruta al archivo de ponderaciones espaciales que creó.
Se proporciona más información acerca del análisis cluster de espacio-tiempo en la documentación Análisis de espacio-tiempo.
-
Las capas del mapa se pueden utilizar para definir la Clase de entidad de entrada. Cuando se utiliza una capa con una selección, sólo las entidades seleccionadas se incluyen en el análisis.
- Nota:
- Si esta herramienta es parte de una herramienta de modelo personalizado, el vínculo HTML sólo aparece en la ventana Resultados si se establece como un parámetro de modelo antes de ejecutar la herramienta.
- Para obtener una mejor visualización de gráficos HTML, asegúrese de que su monitor esté configurado a 96 DPI.
Si proporciona un Archivo de matriz de ponderaciones con una extensión SWM, esta herramienta espera un archivo de matriz de ponderaciones espaciales creado utilizando las herramientas Generar matriz de ponderaciones espaciales o Generar pesos espaciales de red; de lo contrario, esta herramienta espera un archivo de matriz de ponderaciones espaciales con formato ASCII. En algunos casos, el comportamiento es diferente según el tipo de archivo de matriz de ponderaciones espaciales que se utiliza:
- Archivos de matriz de ponderaciones espaciales con formato ASCII:
- Las ponderaciones se utilizan como están. Las relaciones de entidad a entidad que faltan se tratan como ceros.
- Si los pesos están estandarizados por fila, es probable que los resultados sean incorrectos para el análisis en los conjuntos de selección. Si necesita ejecutar el análisis en un conjunto de selección, convierta el archivo de ponderaciones espaciales ASCII a un archivo SWM leyendo los datos ASCII en una tabla y utilizando después la opción CONVERT_TABLE con la herramienta Generar matriz de ponderaciones espaciales.
- Archivo de matriz de ponderaciones espaciales con formato SWM:
- Si las ponderaciones están estandarizadas en filas, se volverán a estandarizar para los conjuntos de selección; de lo contrario, las ponderaciones se utilizan tal cual.
La ejecución del análisis con un archivo de matriz de ponderaciones espaciales con formato ASCII consume muchos recursos de memoria. Para los análisis de más de 5.000 entidades, considere convertir el archivo de matriz de ponderaciones espaciales con formato ASCII en un archivo con formato SWM. Primero coloque los pesos ASCII en una tabla con formato (por ejemplo, por medio de Excel). A continuación, ejecute la herramienta Generar matriz de ponderaciones espaciales utilizando CONVERT_TABLE para el parámetro Conceptualización de relaciones espaciales. El resultado será un archivo de matriz de ponderaciones espaciales con formato .SWM.
-
Cuando esta herramienta se ejecuta en ArcMap, la clase de entidad de salida se agrega automáticamente a la tabla de contenido (TOC) con una representación predeterminada aplicada al campo COType. La representación aplicada se define en un archivo de capa en <ArcGIS>/Desktop10.x/ArcToolbox/Templates/Layers. Puede volver a aplicar la representación predeterminada, de ser necesario, al importar la simbología de capa de plantilla.
La Clase de entidad de salida incluye un campo SOURCE_ID que le permite Unirlo a la Clase de entidad de entrada, si fuera necesario.
-
El tema de ayuda Modelado de relaciones espaciales ofrece información adicional sobre los parámetros de esta herramienta.
Al utilizar shapefiles tenga en cuenta que no pueden almacenar valores nulos. Las herramientas u otros procedimientos que crean shapefiles a partir de entradas sin shapefiles pueden almacenar o interpretar valores nulos como cero. En algunos casos, los nulos se almacenan como valores negativos muy grandes en shapefiles. Esto puede ocasionar resultados inesperados. Consulte Consideraciones de geoprocesamiento para la salida del shapefile para obtener más información.
Antes de ArcGIS 10.0, la clase de entidad de salida es un duplicado de la clase de entidad de entrada con los campos de resultado COType, puntuación z y valor fijos. Después de ArcGIS 10.0, la clase de entidad de salida solo incluye los resultados y los campos utilizados en el análisis.
Sintaxis
Parámetro | Explicación | Tipo de datos |
Input_Feature_Class |
La clase de entidad para la que se realizará el análisis de cluster/valor atípico. | Feature Layer |
Input_Field |
El campo numérico que se evaluará. | Field |
Output_Feature_Class |
La clase de entidad de salida que recibirá los campos de resultados. | Feature Class |
Conceptualization_of_Spatial_Relationships |
Especifica cómo se conceptualizan las relaciones espaciales entre las entidades.
| String |
Distance_Method |
Especifica cómo se calculan las distancias desde cada entidad hasta las entidades vecinas.
| String |
Standardization |
Se recomienda la estandarización de filas siempre que la distribución de las entidades esté potencialmente influenciada debido al diseño de muestreo o a un esquema de agregación impuesto.
| String |
Distance_Band_or_Threshold_Distance (Opcional) |
Especifica una distancia de valor límite para las opciones Distancia inversa y Distancia fija. Las entidades que están fuera del valor límite especificado para una entidad de destino se ignoran en el análisis de esa entidad. Sin embargo, para la Zona de indiferencia, la influencia de las entidades que están fuera de la distancia dada se reduce con la distancia, mientras que aquellas que están dentro del umbral de distancia se consideran por igual. El valor de distancia introducido debe coincidir con el del sistema de coordenadas de salida. Para las conceptualizaciones de relaciones espaciales de la Distancia inversa, un valor de 0 indica que no se aplica una distancia de umbral; cuando este parámetro se deja en blanco, se calcula y se aplica un valor de umbral predeterminado. Este valor predeterminado es la distancia euclidiana que garantiza que cada entidad tenga como mínimo un vecino. Este parámetro no tiene efecto cuando se seleccionan las conceptualizaciones espaciales Contigüidad de polígono u Obtener ponderaciones espaciales a partir del archivo. | Double |
Weights_Matrix_File (Opcional) |
La ruta a un archivo que contenga los pesos que definen las relaciones espaciales, y potencialmente temporales entre las entidades. | File |
Ejemplo de código
La siguiente secuencia de comandos de la ventana de Python muestra cómo utilizar la herramienta ClusterandOutlierAnalysis.
import arcpy arcpy.env.workspace = "c:/data/911calls" arcpy.ClustersOutliers_stats("911Count.shp", "ICOUNT","911ClusterOutlier.shp","GET_SPATIAL_WEIGHTS_FROM_FILE","EUCLIDEAN_DISTANCE", "NONE","#", "euclidean6Neighs.swm")
La siguiente secuencia de comandos de Python independiente muestra cómo utilizar la herramienta ClusterandOutlierAnalysis.
# Analyze the spatial distribution of 911 calls in a metropolitan area # using the Cluster-Outlier Analysis Tool (Anselin's Local Moran's I) # Import system modules import arcpy # Set geoprocessor object property to overwrite outputs if they already exist arcpy.gp.OverwriteOutput = True # Local variables... workspace = r"C:\Data\911Calls" try: # Set the current workspace (to avoid having to specify the full path to the feature classes each time) arcpy.env.workspace = workspace # Copy the input feature class and integrate the points to snap # together at 500 feet # Process: Copy Features and Integrate cf = arcpy.CopyFeatures_management("911Calls.shp", "911Copied.shp", "#", 0, 0, 0) integrate = arcpy.Integrate_management("911Copied.shp #", "500 Feet") # Use Collect Events to count the number of calls at each location # Process: Collect Events ce = arcpy.CollectEvents_stats("911Copied.shp", "911Count.shp", "Count", "#") # Add a unique ID field to the count feature class # Process: Add Field and Calculate Field af = arcpy.AddField_management("911Count.shp", "MyID", "LONG", "#", "#", "#", "#", "NON_NULLABLE", "NON_REQUIRED", "#", "911Count.shp") cf = arcpy.CalculateField_management("911Count.shp", "MyID", "[FID]", "VB") # Create Spatial Weights Matrix for Calculations # Process: Generate Spatial Weights Matrix... swm = arcpy.GenerateSpatialWeightsMatrix_stats("911Count.shp", "MYID", "euclidean6Neighs.swm", "K_NEAREST_NEIGHBORS", "#", "#", "#", 6) # Cluster/Outlier Analysis of 911 Calls # Process: Local Moran's I clusters = arcpy.ClustersOutliers_stats("911Count.shp", "ICOUNT", "911ClusterOutlier.shp", "GET_SPATIAL_WEIGHTS_FROM_FILE", "EUCLIDEAN_DISTANCE", "NONE", "#", "euclidean6Neighs.swm") except: # If an error occurred when running the tool, print out the error message. print arcpy.GetMessages()
Entornos
- Sistema de coordenadas de salida
La geometría de la entidad se proyecta al Sistema de coordenadas de salida antes del análisis, por lo tanto los valores introducidos para el parámetro Banda de distancia o distancia de umbral deben coincidir con los que se especificaron en el Sistema de coordenadas de salida. Todos los cálculos matemáticos se basan en la referencia espacial del Sistema de coordenadas de salida.